A Strong Law for the Size of Yule M-Oriented Recursive Trees
نویسندگان
چکیده
منابع مشابه
The Subtree Size Profile of Bucket Recursive Trees
Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the $p$-th factorial moments of the random variable $S_{n,1}$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial...
متن کاملThe Subtree Size Profile of Plane-oriented Recursive Trees
In this extended abstract, we outline how to derive limit theorems for the number of subtrees of size k on the fringe of random plane-oriented recursive trees. Our proofs are based on the method of moments, where a complex-analytic approach is used for constant k and an elementary approach for k which varies with n. Our approach is of some generality and can be applied to other simple classes o...
متن کاملLimit Theorems for Subtree Size Profiles: Plane-oriented Recursive Trees
We investigate the number of subtrees of size k on the fringe of plane-oriented recursive trees. We use a complex-analytic method to derive precise expansions of mean value and variance as well as a central limit theorem for fixed k. Moreover, we use an elementary approach to derive limit laws when k is growing with n. Our approaches are of some generality and can be applied to other simple cla...
متن کاملThe structure and distances in Yule recursive trees
Based on uniform recursive trees, we introduce random trees with the factor of time, which are named Yule recursive trees. The structure and the distance between the vertices in Yule recursive trees are investigated in this paper. For arbitrary time t > 0, we first give the probability that a Yule recursive tree Yt is isomorphic to a given rooted tree γ ; and then prove that the asymptotic dist...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics, Statistics and Informatics
سال: 2012
ISSN: 1336-9180
DOI: 10.2478/v10294-012-0015-1